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Abstract We study the sum ("(s) = xj E;' over the eigenvalues Ej of the Schrtidinger 
equation in a spherical domain with Dmchlet walls. lhreaded by a line of magnetic flux. Ralher 
than using Green function techniques, we tackle the mathematically non-irivial problem of 
finding exact sum rules for the m o s  of Bessel functions Jv,  which are exmmely helpful 
when seeking numerical approximations to ground state energies. These results are particularly 
valuable if v is neither an integer nor half an odd integer. 

Dedicated to David Bohm, in memoriam. 

1. Introduction 

There is a large class of physically interesting problems where the Hamiltonian is closely 
related to the operator of Bessel's equation, this includes, e.g.: (i) classical equations for 
vibrating strings and drumheads, heat conduction in cylinders, normal modes in resonant 
cavities, Fraunhofer difraction through circular apertures, etc.; (ii) quantum particles which 
move freely within cylindrically or spherically symmetric domains, on whose boundaries 
the wave function vanishes (they play the role of reflecting or bouncing walls). The two- 
dimensional case has been further complicated in two different ways: by altering the shape 
of the boundary-uantum billiards [1,2]-and by introducing magnetic potentials such that 
the domain is threaded by a line of magnetic flux-Ahmnov-Bohm quantum billiards [2]. 

This paper deals with the extension of the last situation to spherical domains of arbitrary 
radius a ,  diamemcally threaded by a flux line. For such a system, the time-independent 
Schrijdinger.equation takes the form 

1 
-1-ifiV - ~ A ( T ) ] * Y ( T )  EY(T) 
2P 

where p is the mass of the particle, q its 'charge and A(?) is some suitable vector potential, 
which produces a straight line of flux along the z axis. To this end we choose 
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where 0 is the value of the flux and e, denotes the unitary tangent vector for increasing (p 
(the usual spherical coordinates, r, 0 and 'p, are employed). This corresponds to selecting a 
gauge in which the lines of the vector potential become concentric circles. After noticing 
that V . A  = 0, as should be expected, (1.1) reduces to 

where k2 = 2pE/li2 and +a = (q/li)@/;?n. Applying the usual variable separation method, 
we set Y(r .  8 ,  'p) = R(r)Y(e, q) and anive at 

[$r2$+kr  - C  R(r)=O 
2 2  1 

with C a separation constant. Writing C = B(B + I), (1.4) becomes the spherical Bessel 
equation of parameter b, not necessarily integer. Thus, the solution regular at r = 0 is 

(1.6) 

where j p  denotes the spherical Bessel function. As a result of the boundary condition 
imposed on the surface r = a, ka must be a zero of J ~ + ~ j 2 .  The energy is therefore 
discretized as 

j ~ + l , z , ~  being the nth positive zero of J g + ~ n .  

performing the change of variables x = cos@, equation (1.5) yields 
Taking Y(0, 'p) = @(e)@((p) with the function @(CO) of the form emP, m E Z, and 

and writing @ ( e ( x ) )  = (I-x~)~"-"~/~u(x), the function u(x)  satisfies the following equation 

( I  -2) u " - 2 x ( ~ m - + a l + l )  u'+[C-Im-cul(lm-+aI+l)]u=O. (1.9) 

Since x = 0 is a regular point, we make the expansion u(x) = C&akxk, which leads to 
the recurrence relation 

~ (1.10) ( k +  Im -ul)(k + Im --I + 1) -C 
(k  + 2)(k + 1) ak . ~ K C Z  = 

Good behaviour at x = f l  can only be achieved by truncating the series into a polynomial. 
This takes place if there is some p E N such that C = (Im - + p)(lm - a1 + p + 1). 
This recurrence relation would be the same as the one for Legendre's associated functions 
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Pr. were it not for the presence of a (generally) non-integer a!. Therefore, we adopt the 
notation 

@(e) - P;-n(cose) / m  -a!/ < f l  (1.11) 

where fi  = Im - a!/ + p is, as a rule, also non-integer. The general form of the wave 
function is a superposition of the trpe 

(1.12) 

The angular eigenfunctions - P~-'(cos 0)  eh* generalize the spherical hamtonics 
f i m ( B ,  (p), corresponding to a! = 0. It is precisely for this reason-i.e. the presence of 
a!-that the solutions are no longer eigenfunctions of the angular momentum L2 (they are 
instead eigenfuctions of the mechanical momentum n2). This was to be expected, as radial 
symmetry has been broken by A(T). The energy spectrum has now become 

Ea.. = - m G Z  f l = / m - a ! l + p  pepd .  (1.13) 

The ground state energy is therefore Eo,, = (h2/2fia!z)j$,+,~z,l, for Ia!I < 1/2. Notice that 
a = 1/2 gives rise to double degeneracy, since states with m and -m + 1 have the same 
energy. This is also true, in particular, for the ground state. 

Let us recall that the zeta function of a Hermitean operator A with infinitely many 
discrete eigenvalues hi is defined as 

R2 .2 
zfia!2 JP+ I /2.n 

(1.14) 

An alternative to the computer evaluation of these Bessel function zeros is their 
approximation by means of sum rules. When A has a discrete sp&trum hl 2 h~ < < . . ., 
several ways to find estimates of low-lying eigenvalues-quoted in [4]--are possible. The 
most suitable here is Euler's method (originally applied to the zeros of Jo), which is_based 
on the inequalities 

(1.15) 

In fact, ~i1n,+,[3~(s)]-l/~ = hns+m (<A(sj/CA(s + 1)) = A I  and, prior to taking the limit, 
(1.15) always holds. 

In OUT case, we will take A to be the operator of the spherical Bessel equation (1.4) 
with C = ( Im-a!l fp)( lm-a!j+p+l) .  Thus,foreachpossibleI; thezetafunction&(s) 
to be considered is of the type <A (s) - ("(a), with 

(1.16) 

where j ,  is the nth non-vanishing zero of J,, The condition Re s 1 stems from 
considering the asymptotic form of the jvn's, which is roughly (U - &/2 + nn, and from 
comparing with the Hunvitz zeta function. At any rate, the existence of poles at some 
values of s ought to be checked by operator heat-kemel expansion methods. 
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2. Recursive rules for zeta functions associated with B w e l  operators 

2.1. Quadratic recursion 

When written in the form of an infinite product involving its non-vanishing zeros, the vth 
Besset function of the first species reads 

Differentiating the log of this expression with respect to z, and using the identity 

(2.2) 
v 
2 

J:(z) = -J&) - J ” + l ( 4  

we arrive at 

and, since j , ,  < jvz < . . ., taking IzI < j , ,  we are able to put 

Then, interchanging the summations and looking at (1.16) we arrive at 

This formula will constitute our starting point and is a well known result (see e.g. [3, p 611). 
Now one can, of course. find the values of the zeta functions through 

Rather than doing this, we take the derivative of (2.4) with respect to z, and making use of 
(2.2) and 

we obtain 

Replacing J V + ~ ( z ) / J v ( z )  with the RHS of (2.4, we get a sum of series which can be recast 
into the form 
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Since it must be satisfied for any z with IzI < jv,,  the identity must hold separately for 
every power of this variable. In particular, for n = 1 we are led to 

while, for n >, 2, the 'quadratic' recursive relation 

(2.7) 

follows. In the appendix we present an altemative derivation of this formula by direct 
integration over a convenient contour in the complex plane. 

This equation, together~with the previous, provides the value of ("(2n) for any even 
integer argument. The first results thus obtained are: 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

.. 
These expressions are quoted by Watson [4] as due to Rayleigh. They are given without 
proof in his treatise and are generally overlooked. Now, with the help of (2.8), our derivation 
above has been straightforward (for a comparison, see the old derivation by Cayley [5]). 

An immediate consequence of (2.8) is the non-trivial equality 

(2.13) 
I n- l  m 

,=I kn=i I v k h n  
.21 ,= (v  + l)fv(2n). 

k#m 

The procedure described here has application to other functions that can be expressed 
as infinite products. For instance, we take sinz = z n z l ( l  - z2/n2n2).  Its logarithmic 
derivative gives (assuming IzI < x )  a known expansion for ctg z 

(2.14) 

where 5 is the Riemann zeta function itself. Differentiating with respect to ,z, the LHS will 
be -csc2z = -(I + ctg '2). Replacing ctg z with the series (2.14). kd the RHS with its 
derivative, we obtain an identity which must be fulfilled for every power of z. Thus 
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This provides a method for the recurrent evaluation of 5(2n) from just the knowledge 
of ((2). Bearing in mind the relation between zeta function and Bernoulli numbers, 
5(2n) = (-1)”+’[(21()”/2(2n)!]Bz,. the previous equations read 

(2.16) 

They supply a different way of finding all the non-vanishing Bemoulli numbers ( B I  aside) 
from the value of 8 2 .  Quation (2.15) also yields 

Actually, all these results can also be obtained from 
J1p(z) = m s i n z .  

2.2. Linear recursion 

(2.17) 

#se for {” by taking U = 4, ,since 

The above recurrence relation has tumed out to be a powerful too! for successively obtaining 
the zeta functions of even argument But, having succeeded in finding a ‘second-order’ 
law-as the RHS involves products of zeta functions at lower arguments-we would also 
like to have a linear rule available. The example of Euler’s method (shown, e.g. in [4, p 5001) 
takes advantage of a linear recurrence among the 5~(2n)’s. Now, our aim is to find the 
general form of such types of relation, thus extending the procedure to any U. 

We start, once more, by taking (2.4). this time written as 

Next, replacing the Jv’s with their power series expansions 

(2.18) 

(2.19) 

(in general, these factorials are to be understood as gamma functions @+U)! 
we obtain a relationship between series which, after some index rearrangements, reads 

r(k+u+l)), 

Validity for any z calls for the vanishing of every coefficient. Therefore 

n n! (n+u)! 
(n - k)! (n + u - k)!  

= ~(-1)’4’- 5;(2k+2) n 20 1 
4(n + U +  1) Lo 

(2.20) 

(2.21) 
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which amounts to 

This is the linear relation we were looking for. 
The first resulting identities are 

(2.23) 

(2.24) 

(275) 

(2.26) 

(2.27) 

This can be regarded as a system of linear equations in 5,(2), &(4), ...,( "(lo), which can 
be solved by repeated substitution from the first equation. It can be checked that its solution 
is (2.7), (2.9), (2.10), (2.1 l), (2.12). The following remark is in order: although a linear 
recursion looks in principle simpler than one involving products, in practice it is much 
easier to work with (2.8) than with (2.22). 

3. Numerical evaluation of the ground state energies 

Euler's method, combined with (2.7) and (2.8). turns out to be a very efficient procedure 
for the computation of h.1, associated with the ground state (here U = Im - a1 + p + 1/2). 
The lower and upper bounds in (1.15) are now [<"(2k)]-'@) and J<u(2&)/5,(2k+2), 
respectively, where the square root comes from the factor 2 in the argument when going 
from to <A. We calculate them for increasing k's until convergence of both the lower and 
the upper successions becomes apparent. At every step, a new 1;(2k) is found by means of 
a recursive function-implementing (2.7) and (2.8t-which is part of a simple C program. 
Table 1 shows the intermediate results obtained for the cases U = 0,1/2 and 1, whose first 
non-vanishing zeros are known to be 2.404826.. ., i~ and 3.831706.. ., respectively. The 
figures obtained after arriving at k = 10 for different U'S between 0 and 1 are displayed in 
the table 2. Of these results, only those for U > 1/2 can be physically meaningful, as the 



2416 E Elizalde et a1 

Table 1. Successive values in the approximation U) jut, corresponding to Y = 0.1/2.1. For 
each v, the values in the left and right columns are the lower and upper bounds, oblained as 
[5vC2k)l-’’nx1 and [<v(2k)/<.(2k + 2)]” respectively. 

k ” = O  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2.000000 2.828427 
2378414 2.449490 
2.401874 2.412091 
2.404424 2406133 
2.404766 2.405069 
2.404816 2404871 
2.404824 2404834 
2.404825 2404827 
2.404826 2404826 
2.404826 2404826 

” = 112 

2.449490 3.872983 
3.080070 3.240370 
3.132603 3.162278 
3.139995 3.146427 
3.141280 3.142768 
3.141528 3.141883 
3.141579 3.141665 
3.141590 3.141611 
3.141592 3.141597 
3.141593 3.141594 

” = I  

2.828427 4.898979 
3.722419 4.000000 
3.812737 3.872983 

3.830778 3.834980 
3.831478 3.832667 
3.831648 3.831990 
3.831691 3.831791 
3.831702 3.831731 
3.831705 3.831713 

3.82nio 3.843076 

Table 2. Different j u l ’ s  for some values of U between 0 and 1. 

0 2.404826 0.6 3.282545 
0.1 2557451 0.7 3.421890 
02 2.707073 0.8 3.559780 
0.3 2.854097 0.9 3.696347 
0.4 2.998849 1 3.831705 
0.5 3.141593 

lowest possible ground state corresponds to w = 112. Such a value would be attained only 
for (I = 0, while higher U’S correspond to non-vanishing U’S.  

The calculation has been repeated-with the same accuracy-using a program which 
implements the linear recursion instead of the quadratic one. None of the results shown in 
the tables have changed, alhough the execution time is now shorter. However, away from 
this range the numerical errors produced by both algorithms may differ. Actually, for U 
close to 100, we have observed differences of the orders of lom6 and even within the 
first ten steps. 

4. Conclusions 

We have focused in this paper on the-derivation of exact and explicit formulas for the 
zeta function corresponding to the zeros of the Bessel function, <,(2k) (for arbitrary w ) ,  
and on their systematic use for obtaining estimates of ground states of related Hamiltonian 
operators. The accuracy of the procedure developed here has proven to be excellent Yet the 
main advantage of the method has not been exploited fully. By this we mean the possibility 
of finding such approximations even in cases where the spectrum does not emerge from 
standard special functions, but <A can nevertheless be calculated, at least for some special 
values [6]. 

Another subject to be explored is the deformation of the spherical domain. The 
corresponding case in two dimensions was tackled by means of conformal mappings between 
the unit disc and other non-circular domains 121. In three dimensions the difficulty would 
surely increase because such powerful complex transformations are lacking. We think that 
these subjects are worth studying in further detail. 
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Here in particular, by dealing with a problem of known spectrum, we have been able to 
relate the physical information concerning the energy levels with some remarkable numerical 
properties involving Bernoulli numbers and ordinary Riemann zeta functions. 
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Appendix Derivation of the quadratic recurrence by complex integration 

The zeta function 

can be written as the integral 

where C is the sector-like contour of the complex plane domain larg(t)l < 6, with 
0 c 6 < X / 2 ,  and It1 E, with 0 e E c hi and Re t > 1. Recalling that, for 
larg(w)l c x - 6  (6 > 0) and Iw/ + 03 

J,,(w) 
X W  

where P, and Qw are series of negative powers in (we assume that w > -1/2), and 
particularizing it for the case w = peiir/' (p  > 0). after substitution in expression (A.2), 
we obtain 

where we have taken 6 = n/2 and C*(E) are the two halves of the small circular part of 
the contour, of radius E. The two integrals in (A.4) are analytical functions of z, while the 
last tem is an explicitly meromorphic function. We thus see that Z; has simple pole at 
z = 1 with residue 1 / ~ .  

Let us now consider the restriction of cv to the strip -1 c Re z < 0. The limit E + 0 
yields the fundamental expression 
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It can be continued-for the value of Re z-to the right (and also to the left) of the real 
axis. Adding and subtracting to the integrand a term like e-p p’ (a~ + b~ In p). with 
ao = l n [ ~ / ( 2 V u ! ) l ,  bo = U + l/Z, and adjusting the remaining a’s and b’s so that the 
difference from the integrand in ( A 3  is 

when p + 0, it can be proven that the function G&) = In [2”u!p-”e-PZu@)] satisfies 

(‘4.7) 

which has a solution of the form G(p) = xzl ckpk, CI = -1, in a neighbourhood of 
p = 0. In terms of G,(p) and H&) ePG,(p), the condition (A.6) is written as 

where M,@) is analytical around p = 0 and contains all the information on the b 
coefficients-which are rigorously proven to exist but will not interest us here. The a’s are 
read off from (AS), with the result 

l a k  Cj 

k !  2”u! j=l (k - j ) !  
ax = -In (-) + -. 

Looking back to (A.5), we see that 

(A.10) 

with the a’s and b’s determined as above, provides the desired analytical extension in the 
ship -1 e Re z < 2 p  + 1. After some stmigthfonvard manipulations we see that for z a 
positive even integer, we get 

tv(2m) = (-l)’”+’mcb. (A.11) 

It is also clear that the b’s do not contribute to the expression in the limit and, by working 
out the precise value of the c’s from (A.8). we obtain t,(Z) = [4(u+ 1)I-l and the quadratic 
recurrence 

(A.12) 

valid for any integer p, p > I 
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